Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Mol Cell ; 84(7): 1186-1187, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579676

RESUMO

The term "intrinsically disordered region" (IDR) in proteins has been used in numerous publications. However, most proteins contain IDRs, the term refers to very different types of structures and functions, and many IDRs become structured upon interaction with other biomolecules. Thus, IDR is an unnecessary, vague, and ultimately confusing concept.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/metabolismo , Conformação Proteica
2.
Trends Genet ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643034

RESUMO

Enhancers are the key regulators of other DNA-based processes by virtue of their unique ability to generate nucleosome-depleted regions in a highly regulated manner. Enhancers regulate cell-type-specific transcription of tRNA genes by RNA polymerase III (Pol III). They are also responsible for the binding of the origin replication complex (ORC) to DNA replication origins, thereby regulating origin utilization, replication timing, and replication-dependent chromosome breaks. Additionally, enhancers regulate V(D)J recombination by increasing access of the recombination-activating gene (RAG) recombinase to target sites and by generating non-coding enhancer RNAs and localized regions of trimethylated histone H3-K4 recognized by the RAG2 PHD domain. Thus, enhancers represent the first step in decoding the genome, and hence they regulate biological processes that, unlike RNA polymerase II (Pol II) transcription, do not have dedicated regulatory proteins.

3.
Yeast ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041485

RESUMO

Polyadenylation occurs at numerous sites within 3'-untranslated regions (3'-UTRs) but rarely within coding regions. How does Pol II travel through long coding regions without generating poly(A) sites, yet then permits promiscuous polyadenylation once it reaches the 3'-UTR? The cleavage/polyadenylation (CpA) machinery preferentially associates with 3'-UTRs, but it is unknown how its recruitment is restricted to 3'-UTRs during Pol II elongation. Unlike coding regions, 3'-UTRs have long AT-rich stretches of DNA that may be important for restricting polyadenylation to 3'-UTRs. Recognition of the 3'-UTR could occur at the DNA (AT-rich), RNA (AU-rich), or RNA:DNA hybrid (rU:dA- and/or rA:dT-rich) level. Based on the nucleic acid critical for 3'-UTR recognition, there are three classes of models, not mutually exclusive, for how the CpA machinery is selectively recruited to 3'-UTRs, thereby restricting where polyadenylation occurs: (1) RNA-based models suggest that the CpA complex directly (or indirectly through one or more intermediary proteins) binds long AU-rich stretches that are exposed after Pol II passes through these regions. (2) DNA-based models suggest that the AT-rich sequence affects nucleosome depletion or the elongating Pol II machinery, resulting in dissociation of some elongation factors and subsequent recruitment of the CpA machinery. (3) RNA:DNA hybrid models suggest that preferential destabilization of the Pol II elongation complex at rU:dA- and/or rA:dT-rich duplexes bridging the nucleotide addition and RNA exit sites permits preferential association of the CpA machinery with 3'-UTRs. Experiments to provide evidence for one or more of these models are suggested.

4.
J Biol Chem ; 299(11): 105289, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748648

RESUMO

Yeast mRNAs are polyadenylated at multiple sites in their 3' untranslated regions (3' UTRs), and poly(A) site usage is regulated by the rate of transcriptional elongation by RNA polymerase II (Pol II). Slow Pol II derivatives favor upstream poly(A) sites, and fast Pol II derivatives favor downstream poly(A) sites. Transcriptional elongation and polyadenylation are linked at the nucleotide level, presumably reflecting Pol II dwell time at each residue that influences the level of polyadenylation. Here, we investigate the effect of Pol II elongation rate on pausing patterns and the relationship between Pol II pause sites and poly(A) sites within 3' UTRs. Mutations that affect Pol II elongation rate alter sequence preferences at pause sites within 3' UTRs, and pausing preferences differ between 3' UTRs and coding regions. In addition, sequences immediately flanking the pause sites show preferences that are largely independent of Pol II speed. In wild-type cells, poly(A) sites are preferentially located < 50 nucleotides upstream from Pol II pause sites, but this spatial relationship is diminished in cells harboring Pol II speed mutants. Based on a random forest classifier, Pol II pause sites are modestly predicted by the distance to poly(A) sites but are better predicted by the chromatin landscape in Pol II speed derivatives. Transcriptional regulatory proteins can influence the relationship between Pol II pausing and polyadenylation but in a manner distinct from Pol II elongation rate derivatives. These results indicate a complex relationship between Pol II pausing and polyadenylation.


Assuntos
Regiões 3' não Traduzidas , RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcrição Gênica , Regiões 3' não Traduzidas/genética , Poliadenilação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Mutação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Mol Cell ; 83(11): 1786-1797.e5, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37137302

RESUMO

We measure transcriptional noise in yeast by analyzing chromatin structure and transcription of an 18-kb region of DNA whose sequence was randomly generated. Nucleosomes fully occupy random-sequence DNA, but nucleosome-depleted regions (NDRs) are much less frequent, and there are fewer well-positioned nucleosomes and shorter nucleosome arrays. Steady-state levels of random-sequence RNAs are comparable to yeast mRNAs, although transcription and decay rates are higher. Transcriptional initiation from random-sequence DNA occurs at numerous sites, indicating very low intrinsic specificity of the RNA Pol II machinery. In contrast, poly(A) profiles of random-sequence RNAs are roughly comparable to those of yeast mRNAs, suggesting limited evolutionary restraints on poly(A) site choice. Random-sequence RNAs show higher cell-to-cell variability than yeast mRNAs, suggesting that functional elements limit variability. These observations indicate that transcriptional noise occurs at high levels in yeast, and they provide insight into how chromatin and transcription patterns arise from the evolved yeast genome.


Assuntos
Nucleossomos , Saccharomyces cerevisiae , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica
6.
Proc Natl Acad Sci U S A ; 120(18): e2301117120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094136

RESUMO

Alternative polyadenylation generates numerous 3' mRNA isoforms that can differ in their stability, structure, and function. These isoforms can be used to map mRNA stabilizing and destabilizing elements within 3' untranslated regions (3'UTRs). Here, we examine how environmental conditions affect 3' mRNA isoform turnover and structure in yeast cells on a transcriptome scale. Isoform stability broadly increases when cells grow more slowly, with relative half-lives of most isoforms being well correlated across multiple conditions. Surprisingly, dimethyl sulfate probing reveals that individual 3' isoforms have similar structures across different conditions, in contrast to the extensive structural differences that can exist between closely related isoforms in an individual condition. Unexpectedly, most mRNA stabilizing and destabilizing elements function only in a single growth condition. The genes associated with some classes of condition-specific stability elements are enriched for different functional categories, suggesting that regulated mRNA stability might contribute to adaptation to different growth environments. Condition-specific stability elements do not result in corresponding condition-specific changes in steady-state mRNA isoform levels. This observation is consistent with a compensatory mechanism between polyadenylation and stability, and it suggests that condition-specific mRNA stability elements might largely reflect condition-specific regulation of mRNA 3' end formation.


Assuntos
Isoformas de RNA , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Poliadenilação , Isoformas de Proteínas/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Estabilidade de RNA/genética
7.
Elife ; 112022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36421680

RESUMO

Alternative polyadenylation yields many mRNA isoforms whose 3' termini occur disproportionately in clusters within 3' untranslated regions. Previously, we showed that profiles of poly(A) site usage are regulated by the rate of transcriptional elongation by RNA polymerase (Pol) II (Geisberg et al., 2020). Pol II derivatives with slow elongation rates confer an upstream-shifted poly(A) profile, whereas fast Pol II strains confer a downstream-shifted poly(A) profile. Within yeast isoform clusters, these shifts occur steadily from one isoform to the next across nucleotide distances. In contrast, the shift between clusters - from the last isoform of one cluster to the first isoform of the next - is much less pronounced, even over large distances. GC content in a region 13-30 nt downstream from isoform clusters correlates with their sensitivity to Pol II elongation rate. In human cells, the upstream shift caused by a slow Pol II mutant also occurs continuously at single nucleotide resolution within clusters but not between them. Pol II occupancy increases just downstream of poly(A) sites, suggesting a linkage between reduced elongation rate and cluster formation. These observations suggest that (1) Pol II elongation speed affects the nucleotide-level dwell time allowing polyadenylation to occur, (2) poly(A) site clusters are linked to the local elongation rate, and hence do not arise simply by intrinsically imprecise cleavage and polyadenylation of the RNA substrate, (3) DNA sequence elements can affect Pol II elongation and poly(A) profiles, and (4) the cleavage/polyadenylation and Pol II elongation complexes are spatially, and perhaps physically, coupled so that polyadenylation occurs rapidly upon emergence of the nascent RNA from the Pol II elongation complex.


Assuntos
Nucleotídeos , Poliadenilação , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Poli A/genética , Poli A/metabolismo , Saccharomyces cerevisiae/genética , Regiões 3' não Traduzidas , Transcrição Gênica
8.
Mol Cell Biol ; 42(9): e0024422, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35972270

RESUMO

The 3' ends of eukaryotic mRNAs are generated by cleavage of nascent transcripts followed by polyadenylation, which occurs at numerous sites within 3' untranslated regions (3' UTRs) but rarely within coding regions. An individual gene can yield many 3'-mRNA isoforms with distinct half-lives. We dissect the relative contributions of protein-coding sequences (open reading frames [ORFs]) and 3' UTRs to polyadenylation profiles in yeast. ORF-deleted derivatives often display strongly decreased mRNA levels, indicating that ORFs contribute to overall mRNA stability. Poly(A) profiles, and hence relative isoform half-lives, of most (9 of 10) ORF-deleted derivatives are very similar to their wild-type counterparts. Similarly, in-frame insertion of a large protein-coding fragment between the ORF and 3' UTR has minimal effect on the poly(A) profile in all 15 cases tested. Last, reciprocal ORF/3'-UTR chimeric genes indicate that the poly(A) profile is determined by the 3' UTR. Thus, 3' UTRs are self-contained modular entities sufficient to determine poly(A) profiles and relative 3'-isoform half-lives. In the one atypical instance, ORF deletion causes an upstream shift of poly(A) sites, likely because juxtaposition of an unusually high AT-rich stretch directs polyadenylation closely downstream. This suggests that long AT-rich stretches, which are not encountered until after coding regions, are important for restricting polyadenylation to 3' UTRs.


Assuntos
Poli A , Poliadenilação , Isoformas de RNA , Saccharomyces cerevisiae , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas , Poli A/genética , Poli A/metabolismo , Isoformas de Proteínas/genética , Isoformas de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
PLoS One ; 17(4): e0264799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482762

RESUMO

MafB (a bZIP transcription factor), ß-catenin (the ultimate target of the Wnt signal transduction pathway that acts as a transcriptional co-activator of LEF/TCF proteins), and WDR77 (a transcriptional co-activator of multiple hormone receptors) are important for breast cellular transformation. Unexpectedly, these proteins interact directly with each other, and they have similar genomic binding profiles. Furthermore, while some of these common target sites coincide with those bound by LEF/TCF, the majority are located just downstream of transcription initiation sites at a position near paused RNA polymerase (Pol II) and the +1 nucleosome. Occupancy levels of these factors at these promoter-proximal sites are strongly correlated with the level of paused Pol II and transcriptional activity.


Assuntos
Cateninas , beta Catenina , Cateninas/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058367

RESUMO

Cells have compensatory mechanisms to coordinate the rates of major biological processes, thereby permitting growth in a wide variety of conditions. Here, we uncover a compensatory link between cleavage/polyadenylation in the nucleus and messenger RNA (mRNA) turnover in the cytoplasm. On a global basis, same-gene 3' mRNA isoforms with twofold or greater differences in half-lives have steady-state mRNA levels that differ by significantly less than a factor of 2. In addition, increased efficiency of cleavage/polyadenylation at a specific site is associated with reduced stability of the corresponding 3' mRNA isoform. This inverse relationship between cleavage/polyadenylation and mRNA isoform half-life reduces the variability in the steady-state levels of mRNA isoforms, and it occurs in all four growth conditions tested. These observations suggest that during cleavage/polyadenylation in the nucleus, mRNA isoforms are marked in a manner that persists upon translocation to the cytoplasm and affects the activity of mRNA degradation machinery, thus influencing mRNA stability.


Assuntos
RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Leveduras/genética , Regiões 3' não Traduzidas , Poliadenilação , Clivagem do RNA , Isoformas de RNA , Estabilidade de RNA , Leveduras/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34764224

RESUMO

Using a tamoxifen-inducible time-course ChIP-sequencing (ChIP-seq) approach, we show that the ubiquitous transcription factor SP1 has different binding dynamics at its target sites in the human genome. SP1 very rapidly reaches maximal binding levels at some sites, but binding kinetics at other sites is biphasic, with rapid half-maximal binding followed by a considerably slower increase to maximal binding. While ∼70% of SP1 binding sites are located at promoter regions, loci with slow SP1 binding kinetics are enriched in enhancer and Polycomb-repressed regions. Unexpectedly, SP1 sites with fast binding kinetics tend to have higher quality and more copies of the SP1 sequence motif. Different cobinding factors associate near SP1 binding sites depending on their binding kinetics and on their location at promoters or enhancers. For example, NFY and FOS are preferentially associated near promoter-bound SP1 sites with fast binding kinetics, whereas DNA motifs of ETS and homeodomain proteins are preferentially observed at sites with slow binding kinetics. At promoters but not enhancers, proteins involved in sumoylation and PML bodies associate more strongly with slow SP1 binding sites than with the fast binding sites. The speed of SP1 binding is not associated with nucleosome occupancy, and it is not necessarily coupled to higher transcriptional activity. These results with SP1 are in contrast to those of human TBP, indicating that there is no common mechanism affecting transcription factor binding kinetics. The biphasic kinetics at some SP1 target sites suggest the existence of distinct chromatin states at these loci in different cells within the overall population.


Assuntos
Genoma Humano/genética , Fator de Transcrição Sp1/genética , Sítios de Ligação/genética , Cromatina/genética , Genômica/métodos , Humanos , Motivos de Nucleotídeos/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica/genética
12.
Elife ; 102021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515029

RESUMO

The preinitiation complex (PIC) for transcriptional initiation by RNA polymerase (Pol) II is composed of general transcription factors that are highly conserved. However, analysis of ChIP-seq datasets reveals kinetic and compositional differences in the transcriptional initiation process among eukaryotic species. In yeast, Mediator associates strongly with activator proteins bound to enhancers, but it transiently associates with promoters in a form that lacks the kinase module. In contrast, in human, mouse, and fly cells, Mediator with its kinase module stably associates with promoters, but not with activator-binding sites. This suggests that yeast and metazoans differ in the nature of the dynamic bridge of Mediator between activators and Pol II and the composition of a stable inactive PIC-like entity. As in yeast, occupancies of TATA-binding protein (TBP) and TBP-associated factors (Tafs) at mammalian promoters are not strictly correlated. This suggests that within PICs, TFIID is not a monolithic entity, and multiple forms of TBP affect initiation at different classes of genes. TFIID in flies, but not yeast and mammals, interacts strongly at regions downstream of the initiation site, consistent with the importance of downstream promoter elements in that species. Lastly, Taf7 and the mammalian-specific Med26 subunit of Mediator also interact near the Pol II pause region downstream of the PIC, but only in subsets of genes and often not together. Species-specific differences in PIC structure and function are likely to affect how activators and repressors affect transcriptional activity.


Assuntos
Complexo Mediador/metabolismo , RNA Polimerase II/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Iniciação da Transcrição Genética , Animais , Linhagem Celular , Bases de Dados Genéticas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Regulação Fúngica da Expressão Gênica , Humanos , Complexo Mediador/química , Complexo Mediador/genética , Camundongos , Regiões Promotoras Genéticas , Conformação Proteica , RNA Polimerase II/química , RNA Polimerase II/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fatores Genéricos de Transcrição/química , Fatores Genéricos de Transcrição/genética , Sítio de Iniciação de Transcrição
13.
Elife ; 102021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34463254

RESUMO

The YAP and TAZ paralogs are transcriptional co-activators recruited to target sites by TEAD proteins. Here, we show that YAP and TAZ are also recruited by JUNB (a member of the AP-1 family) and STAT3, key transcription factors that mediate an epigenetic switch linking inflammation to cellular transformation. YAP and TAZ directly interact with JUNB and STAT3 via a WW domain important for transformation, and they stimulate transcriptional activation by AP-1 proteins. JUNB, STAT3, and TEAD co-localize at virtually all YAP/TAZ target sites, yet many target sites only contain individual AP-1, TEAD, or STAT3 motifs. This observation and differences in relative crosslinking efficiencies of JUNB, TEAD, and STAT3 at YAP/TAZ target sites suggest that YAP/TAZ is recruited by different forms of an AP-1/STAT3/TEAD complex depending on the recruiting motif. The different classes of YAP/TAZ target sites are associated with largely non-overlapping genes with distinct functions. A small minority of target sites are YAP- or TAZ-specific, and they are associated with different sequence motifs and gene classes from shared YAP/TAZ target sites. Genes containing either the AP-1 or TEAD class of YAP/TAZ sites are associated with poor survival of breast cancer patients with the triple-negative form of the disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transformação Celular Neoplásica/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Fator de Transcrição STAT3/genética , Transdução de Sinais , Fator de Transcrição AP-1/genética , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteínas de Sinalização YAP
14.
Sci Adv ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523865

RESUMO

Cytokines are extracellular proteins that convey messages between cells by interacting with cognate receptors at the cell surface and triggering signaling pathways that alter gene expression and other phenotypes in an autocrine or paracrine manner. Here, we show that the calcium-dependent cytokines S100A8 and S100A9 are recruited to numerous promoters and enhancers in a model of breast cellular transformation. This recruitment is associated with multiple DNA sequence motifs recognized by DNA binding transcription factors that are linked to transcriptional activation and are important for transformation. The cytokines interact with these transcription factors in nuclear extracts, and they activate transcription when artificially recruited to a target promoter. Nuclear-specific expression of S100A8/A9 promotes oncogenic transcription and leads to enhanced breast transformation phenotype. These results suggest that, in addition to its classical cytokine function, S100A8/A9 can act as a transcriptional coactivator.


Assuntos
Mama , Calgranulina A , Calgranulina B , Transformação Celular Neoplásica , Mama/patologia , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Citocinas/metabolismo , Humanos , Fatores de Transcrição/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(46): 28925-28929, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33144504

RESUMO

Cellular transformation is associated with dramatic changes in gene expression, but it is difficult to determine which regulated genes are oncogenically relevant. Here we describe Pheno-RNA, a general approach to identifying candidate genes associated with a specific phenotype. Specifically, we generate a "phenotypic series" by treating a nontransformed breast cell line with a wide variety of molecules that induce cellular transformation to various extents. By performing transcriptional profiling across this phenotypic series, the expression profile of every gene can be correlated with the strength of the transformed phenotype. We identify ∼200 genes whose expression profiles are very highly correlated with the transformation phenotype, strongly suggesting their importance in transformation. Within biological categories linked to cancer, some genes show high correlations with the transformed phenotype, but others do not. Many genes whose expression profiles are highly correlated with transformation have never been associated with cancer, suggesting the involvement of heretofore unknown genes in cancer.


Assuntos
Variação Biológica da População/genética , Estudos de Associação Genética/métodos , Transformação Genética/genética , Animais , Linhagem Celular Transformada , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fenótipo , RNA/genética
16.
Elife ; 92020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32845240

RESUMO

Yeast cells undergoing the diauxic response show a striking upstream shift in poly(A) site utilization, with increased use of ORF-proximal poly(A) sites resulting in shorter 3' mRNA isoforms for most genes. This altered poly(A) pattern is extremely similar to that observed in cells containing Pol II derivatives with slow elongation rates. Conversely, cells containing derivatives with fast elongation rates show a subtle downstream shift in poly(A) sites. Polyadenylation patterns of many genes are sensitive to both fast and slow elongation rates, and a global shift of poly(A) utilization is strongly linked to increased purine content of sequences flanking poly(A) sites. Pol II processivity is impaired in diauxic cells, but strains with reduced processivity and normal Pol II elongation rates have normal polyadenylation profiles. Thus, Pol II elongation speed is important for poly(A) site selection and for regulating poly(A) patterns in response to environmental conditions.


Assuntos
Poliadenilação/genética , Saccharomyces cerevisiae/genética , Elongação da Transcrição Genética , Poli A/genética , Poli A/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Genome Res ; 29(12): 1939-1950, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31732535

RESUMO

Transcription factor binding to target sites in vivo is a dynamic process that involves cycles of association and dissociation, with individual proteins differing in their binding dynamics. The dynamics at individual sites on a genomic scale have been investigated in yeast cells, but comparable experiments have not been done in multicellular eukaryotes. Here, we describe a tamoxifen-inducible, time-course ChIP-seq approach to measure transcription factor binding dynamics at target sites throughout the human genome. As observed in yeast cells, the TATA-binding protein (TBP) typically displays rapid turnover at RNA polymerase (Pol) II-transcribed promoters, slow turnover at Pol III promoters, and very slow turnover at the Pol I promoter. Turnover rates vary widely among Pol II promoters in a manner that does not correlate with the level of TBP occupancy. Human Pol II promoters with slow TBP dissociation preferentially contain a TATA consensus motif, support high transcriptional activity of downstream genes, and are linked with specific activators and chromatin remodelers. These properties of human promoters with slow TBP turnover differ from those of yeast promoters with slow turnover. These observations suggest that TBP binding dynamics differentially affect promoter function and gene expression, possibly at the level of transcriptional reinitiation/bursting.


Assuntos
Regulação da Expressão Gênica/fisiologia , Genoma Humano , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA Polimerase I/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Humanos
18.
Proc Natl Acad Sci U S A ; 116(19): 9453-9462, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30910960

RESUMO

Using an inducible, inflammatory model of breast cellular transformation, we describe the transcriptional regulatory network mediated by STAT3, NF-κB, and AP-1 factors on a genomic scale. These proinflammatory regulators form transcriptional complexes that directly regulate the expression of hundreds of genes in oncogenic pathways via a positive feedback loop. This transcriptional feedback loop and associated network functions to various extents in many types of cancer cells and patient tumors, and it is the basis for a cancer inflammation index that defines cancer types by functional criteria. We identify a network of noninflammatory genes whose expression is well correlated with the cancer inflammatory index. Conversely, the cancer inflammation index is negatively correlated with the expression of genes involved in DNA metabolism, and transformation is associated with genome instability. We identify drugs whose efficacy in cell lines is correlated with the cancer inflammation index, suggesting the possibility of using this index for personalized cancer therapy. Inflammatory tumors are preferentially associated with infiltrating immune cells that might be recruited to the site of the tumor via inflammatory molecules produced by the cancer cells.


Assuntos
DNA de Neoplasias/metabolismo , Regulação Neoplásica da Expressão Gênica , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição AP-1/metabolismo , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Humanos , Inflamação , NF-kappa B/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição AP-1/genética
19.
Elife ; 82019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30681409

RESUMO

Transcription by RNA polymerase II requires assembly of a preinitiation complex (PIC) composed of general transcription factors (GTFs) bound at the promoter. In vitro, some GTFs are essential for transcription, whereas others are not required under certain conditions. PICs are stable in the absence of nucleotide triphosphates, and subsets of GTFs can form partial PICs. By depleting individual GTFs in yeast cells, we show that all GTFs are essential for TBP binding and transcription, suggesting that partial PICs do not exist at appreciable levels in vivo. Depletion of FACT, a histone chaperone that travels with elongating Pol II, strongly reduces PIC formation and transcription. In contrast, TBP-associated factors (TAFs) contribute to transcription of most genes, but TAF-independent transcription occurs at substantial levels, preferentially at promoters containing TATA elements. PICs are absent in cells deprived of uracil, and presumably UTP, suggesting that transcriptionally inactive PICs are removed from promoters in vivo.


Assuntos
RNA Polimerase II/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Genéricos de Transcrição/genética , Transcrição Gênica , Proteínas de Ligação a DNA/genética , Didesoxinucleotídeos/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/genética , Fator de Transcrição TFIID/genética
20.
Gut ; 68(7): 1271-1286, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30337373

RESUMO

OBJECTIVE: Despite advances in the identification of epigenetic alterations in pancreatic cancer, their biological roles in the pathobiology of this dismal neoplasm remain elusive. Here, we aimed to characterise the functional significance of histone lysine methyltransferases (KMTs) and demethylases (KDMs) in pancreatic tumourigenesis. DESIGN: DNA methylation sequencing and gene expression microarrays were employed to investigate CpG methylation and expression patterns of KMTs and KDMs in pancreatic cancer tissues versus normal tissues. Gene expression was assessed in five cohorts of patients by reverse transcription quantitative-PCR. Molecular analysis and functional assays were conducted in genetically modified cell lines. Cellular metabolic rates were measured using an XF24-3 Analyzer, while quantitative evaluation of lipids was performed by liquid chromatography-mass spectrometry (LC-MS) analysis. Subcutaneous xenograft mouse models were used to evaluate pancreatic tumour growth in vivo. RESULTS: We define a new antitumorous function of the histone lysine (K)-specific methyltransferase 2D (KMT2D) in pancreatic cancer. KMT2D is transcriptionally repressed in human pancreatic tumours through DNA methylation. Clinically, lower levels of this methyltransferase associate with poor prognosis and significant weight alterations. RNAi-based genetic inactivation of KMT2D promotes tumour growth and results in loss of H3K4me3 mark. In addition, KMT2D inhibition increases aerobic glycolysis and alters the lipidomic profiles of pancreatic cancer cells. Further analysis of this phenomenon identified the glucose transporter SLC2A3 as a mediator of KMT2D-induced changes in cellular, metabolic and proliferative rates. CONCLUSION: Together our findings define a new tumour suppressor function of KMT2D through the regulation of glucose/fatty acid metabolism in pancreatic cancer.


Assuntos
Carcinoma/enzimologia , Carcinoma/patologia , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Animais , Estudos de Casos e Controles , Técnicas de Cultura de Células , Modelos Animais de Doenças , Humanos , Camundongos , Transplante de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...